
Update on Vector & Vector-borne Disease Activity in West Virginia 2016

Eric J. Dotseth
State Public Health Entomologist
West Virginia Department of Health & Human Resources
2017 Mid-Atlantic Mosquito Control Association meeting
February 2, 2017

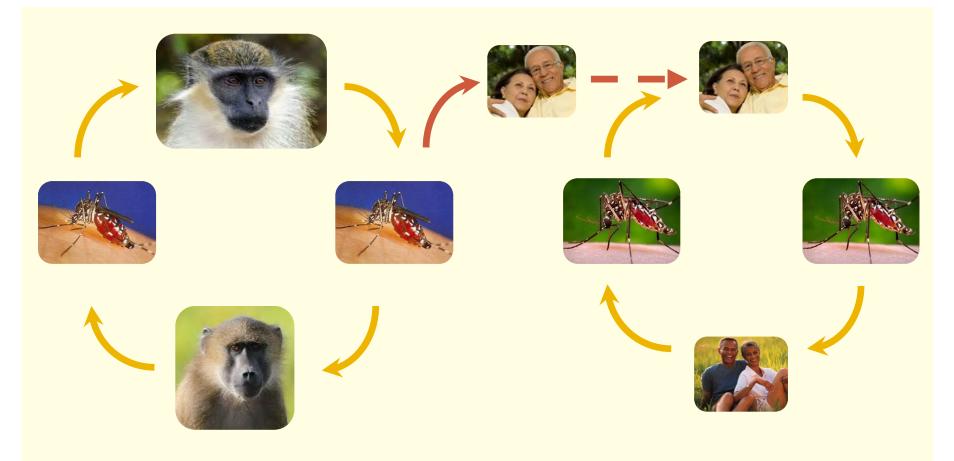
Objectives

- Provide an update on mosquito species diversity in West Virginia.
- Describe the spatial distribution of Zika virus vectors (Aedes aegypti, Aedes albopictus) in the continental United States.
- Present an update on mosquito and mosquito-borne disease activity in West Virginia (following the June 2016 flood).
- Provide an update on tick and tick-borne disease activity in West Virginia.

Introduction

- New mosquito species state records for West Virginia:
 - Aedes dorsalis
 - Aedes tormentor
 - Anopheles walkeri
 - Psorophora horrida
 - Psorophora howardii
- Update in Harrison, B. et al. 2016. Mosquitoes of the Mid-Atlantic Region: An Identification Guide. Mosquito and Vector-borne Infectious Diseases Laboratory Publication 2016-1, Western Carolina University, Cullowhee, North Carolina, 201 pp.
- Dotseth, E. J. & B. A. Harrison. 2016. West Virginia mosquitoes: Sequential list by publication, newly found species, corrections, and notes for earlier records. *Journal of the American Mosquito Control Association* 32 (3): 240-243.

Zika Virus Disease



Zika virus

- Zika virus is a single stranded RNA virus.
- Belongs to the virus family Flaviviridae genus Flavivirus.
 - Yellow fever virus
 - Dengue virus
 - Japanese encephalitis virus
 - West Nile virus
- Transmitted to humans primarily by Aedes (Stegomyia) mosquitoes.
 - Sexual transmission and perinatal transmission of the virus have also been documented.

Zika Virus Transmission Cycle

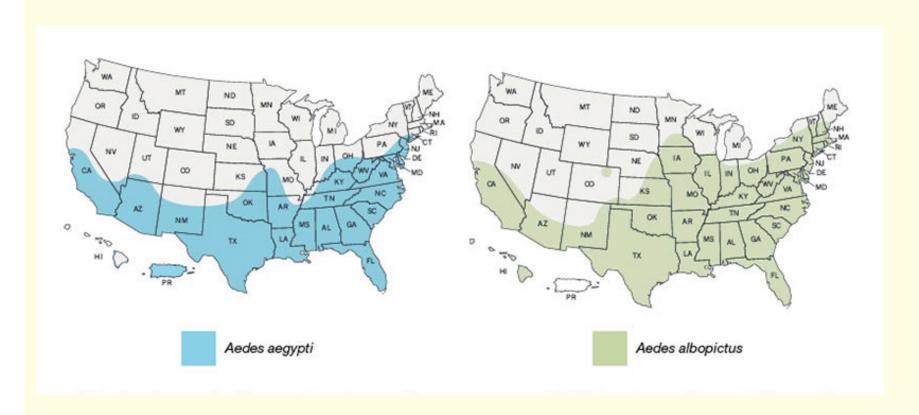
Sylvatic (jungle) cycle

Epidemic (urban) cycle

Zika Virus Disease

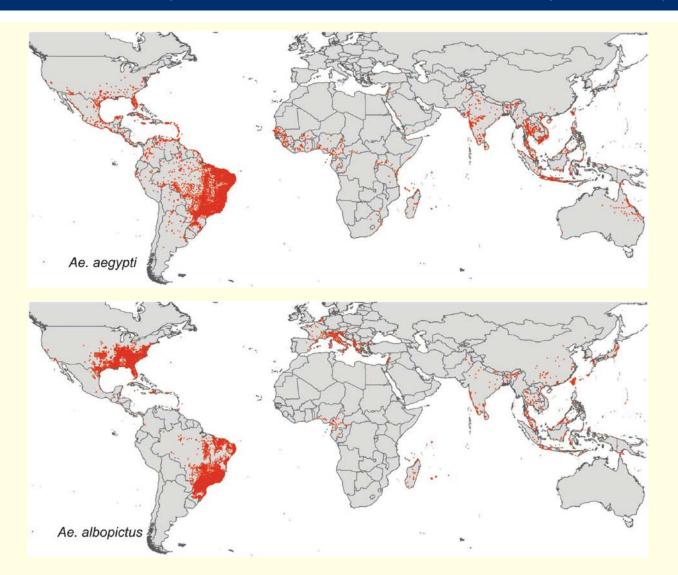
- Mosquito vectors of Zika virus found in the continental United States.
 - Yellow fever mosquito (Aedes aegypti)
 - Asian tiger mosquito (Aedes albopictus)
- Aedes aegypti and Aedes albopictus also transmit dengue virus, chikungunya virus, and yellow fever virus.
- Aedes albopictus is also a competent vector for La Crosse virus.

Aedes aegypti



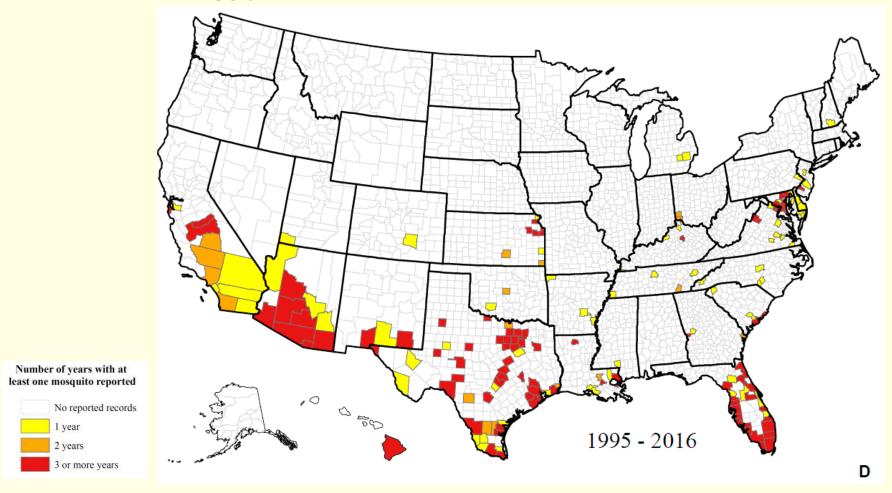
Aedes albopictus

Zika Virus Mosquito Vector Distribution



Estimated range of *Aedes aegypti* and *Aedes albopictus* in the United States, 2016

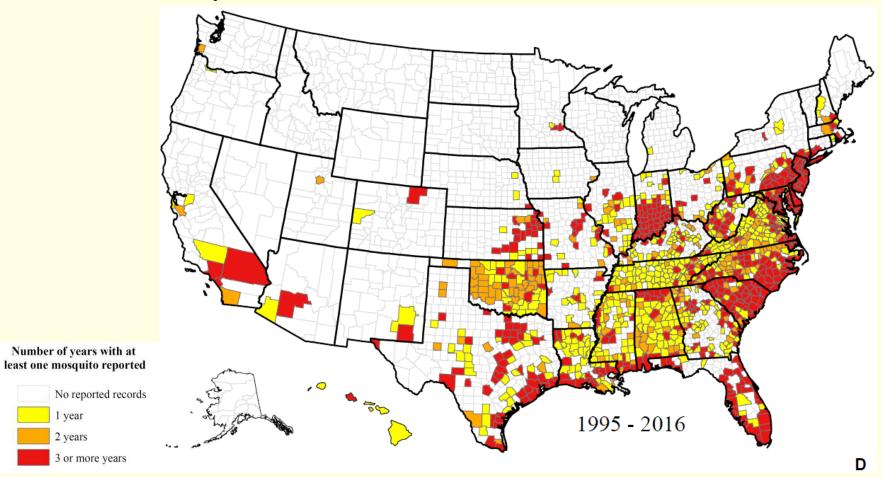
Zika Virus Mosquito Vector Distribution (cont.'d)



Kramer, M. U. G. et al. 2015. The global occurrence of Aedes aegypti and Ae. albopictus occurrence. Scientific Data 2: 150035.

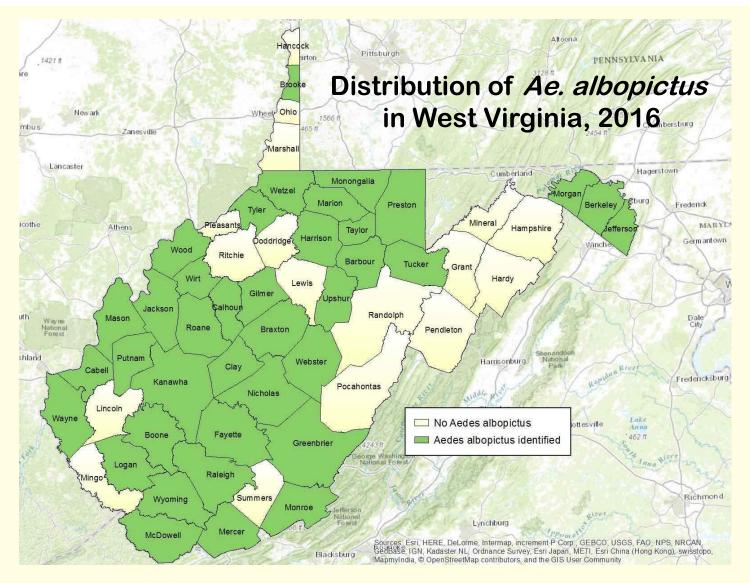
Zika Virus Mosquito Vector Distribution (cont.'d)

Ae. aegypti occurrence records, 1995-2016



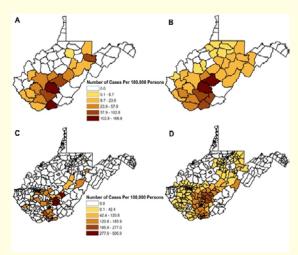
Hahn. M. B. et al. 2016. Reported distribution of *Aedes* (*Stegomyia*) aegypti and *Aedes* (*Stegomyia*) albopictus in the United States, 1995-2016 (Diptera: Culicidae). *Journal of Medical Entomology* **53** (**5**): 1169-1175.

Zika Virus Mosquito Vector Distribution (cont.'d)


Ae. albopictus occurrence records, 1995-2016

Hahn. M. B. *et al.* 2016. Reported distribution of *Aedes* (*Stegomyia*) *aegypti* and *Aedes* (*Stegomyia*) *albopictus* in the United States, 1995-2016 (Diptera: Culicidae). *Journal of Medical Entomology* **53** (**5**): 1169-1175.

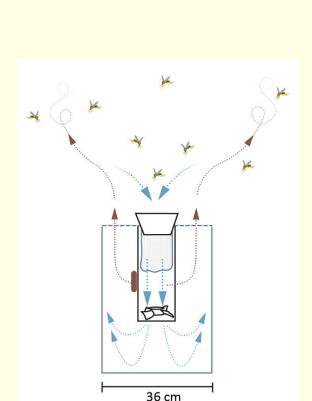
Ae. albopictus Distribution in West Virginia



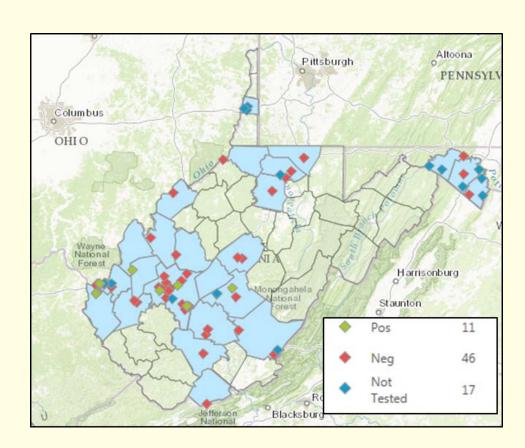
Mosquito Surveillance 2016

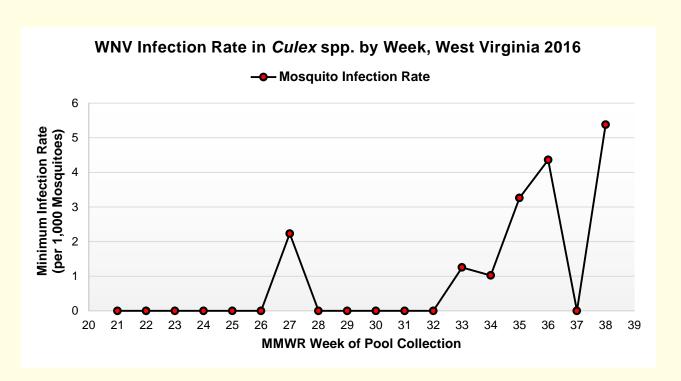
- Mosquito surveillance conducted May 24 through October 12 in 70 localities in 24 counties.
- Regular weekly sampling at counties with high La Crosse encephalitis (LAC) incidence (Raleigh, Fayette, Nicholas) and low LAC incidence (Kanawha, Wood, Jackson).
- Outlying areas were surveyed on semi-regular basis by state or local West Virginia Department of Health & Human Resources' agents.

Unsmoothed and smoothed cumulative incidence of La Crosse virus infections at the county and census tract levels in children 15 years and younger, West Virginia 2003-2007


- Standardized gravid trap and CDC light trap (CO₂ trap).
- Mosquitoes tested for pathogens by West Virginia Office of Laboratory Services.
 - West Nile virus (WNV)
 - La Crosse virus (LACV)
 - Eastern equine encephalitis virus (EEEV)
 - St. Louis encephalitis virus (SLEV)

 Utilized BG Sentinel Trap to capture Aedes albopictus (and Aedes aegypti).

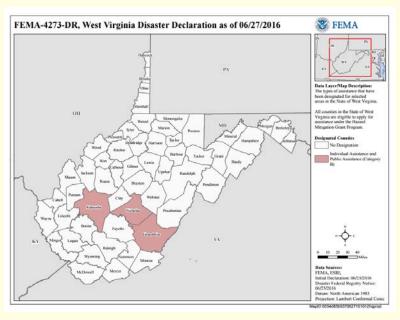




- Eleven (2.8%) of the 395 mosquito pools were infected with WNV.
- WNV positive mosquito pools by county: Kanawha (4), Wayne (3), Cabell (2), Mason (1), Nicholas (1).
- LACV, EEEV, and SLEV were not detected in mosquito pools.

- The first mosquito pool with WNV was collected on July 6, 2016 (Week 27).
- In the adult mosquitoes, WNV activity began to increase in mid-August (Week 33) and reached its peak in September.
- According to WNV minimum infection rate in *Culex* mosquitoes, there was only a 'moderate' human risk of West Nile encephalitis.

Mosquito-borne Disease in West Virginia 2016

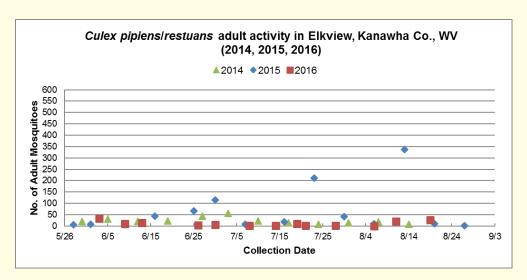


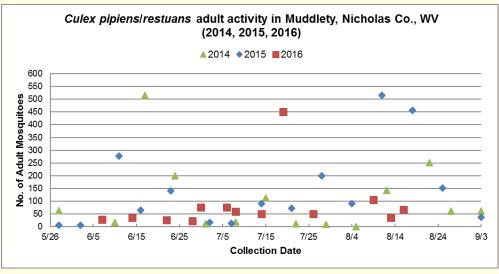
- Confirmed and probable human cases of mosquitoborne disease in West Virginia
 - Eleven Zika virus cases (all travel associated)
 - One malaria case with travel to Cameroon
 - Eight La Crosse encephalitis cases from Fayette, Kanawha, Mason, Nicholas, Summers, and Webster counties
 - One West Nile virus case from Berkeley County

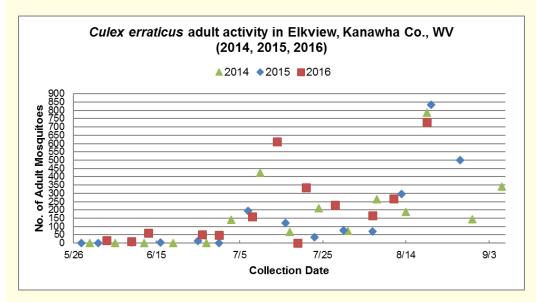
Mosquitoes & Floods

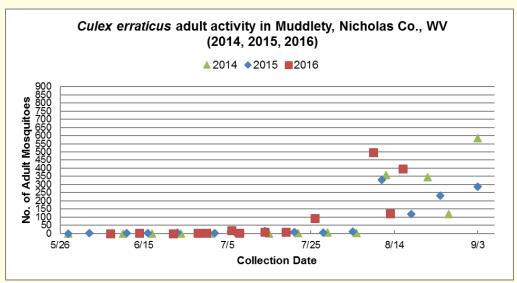
- On June 23, 2016, thunderstorms brought torrential rain to much of West Virginia, resulting in accumulations of 10 inches in 12-24 hours.
- On June 25, 2016, President Obama declared West Virginia a major disaster area and ordered aid provided to flood victims in Kanawha, Nicholas, and Greenbrier counties.

- Mosquito larvae could develop in residual stagnant water near human habitat.
- 'Floodwater' mosquito eggs laid in moist substrate could hatch after being submerged underwater.








- Culex pipiens and Culex restuans are involved in the WNV transmission cycle.
- Larvae of both species will develop in stagnant bodies of water.
- In comparison with 2014 and 2015, Culex pipiens and Culex restuans showed the same or reduced adult activity in 2016.

- Culex erraticus are a pestiferous mosquito species whose larvae develop in ponds and wetlands.
- Mass emergence of adults occurred at approximately the same time in Elkview in 2014, 2015, and 2016.
- Adult emergence patterns in Muddlety similar between 2014, 2015, and 2016.

- Slight increase in some LAC vectors (Aedes albopictus, Aedes triseriatus) and decrease in other LAC vectors (Aedes japonicus).
- There was no dramatic increase in nuisance floodwater mosquito species (Aedes trivittatus, Aedes vexans, Psorophora ferox) following the flood.

Mosquito Species	Elkview, 2014	Elkview, 2015	Elkview, 2016
Aedes albopictus	16	11	25
Aedes triseriatus	3	6	11
Aedes japonicus	30	68	17
Coquillettidia perturbans	1	0	2
Aedes trivittatus	0	1	3
Aedes vexans	2	15	2
Psorophora ferox	0	1	0

Mosquito Species	Muddlety, 2014	Muddlety, 2015	Muddlety, 2016
Aedes albopictus	2	0	0
Aedes triseriatus	0	0	0
Aedes japonicus	0	2	1
Coquillettidia perturbans	75	28	9
Aedes trivittatus	1	12	12
Aedes vexans	5	31	1
Psorophora ferox	0	5	2

There was no increase in adult mosquito activity weeks after the flood in Nicholas or Greenbrier counties.

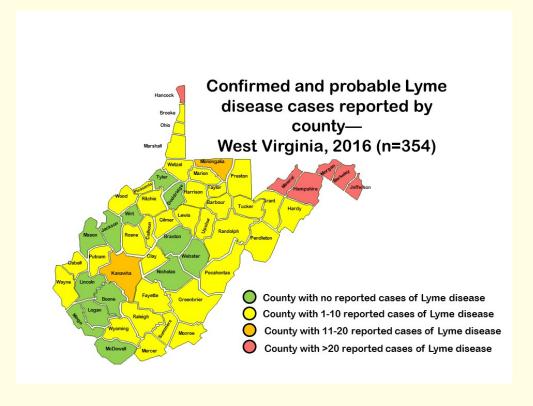
Rainelle	6/30/2016	7/8/2016	7/14/2016
Culex pipiens/restuans	20	6	3
Aedes triseriatus	1	0	0
Aedes japonicus	5	0	0
Aedes canadensis	11	0	0
Aedes trivittatus	31	1	2
Aedes vexans	1	0	2
Psorophora ferox	2	0	0

White Sulphur Springs	6/30/2016	7/8/2016	7/14/2016
Culex pipiens/restuans	4	2	0
Aedes triseriatus	1	0	0
Aedes japonicus	1	0	4
Aedes trivittatus	0	2	0

Summersville	6/30/2016	7/8/2016	7/14/2016
Culex pipiens/restuans	2	0	0
Aedes japonicus	4	12	10
Aedes trivittatus	1	0	0

Coldwell	6/30/2016	7/8/2016	7/14/2016
Culex pipiens/restuans	65	1	2
Aedes japonicus	10	0	4
Aedes trivittatus	0	1	1

Tick-borne Disease

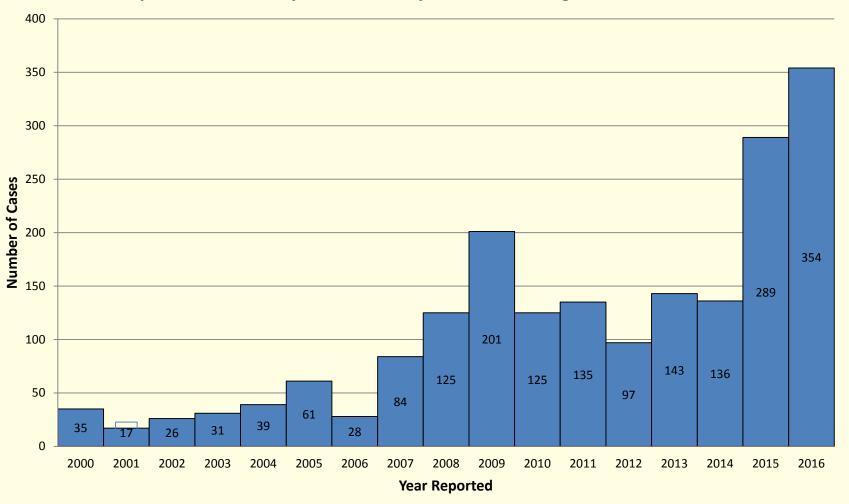

Tick-borne Diseases by Causative Organism(s) and Presence of Tick Vectors in West Virginia

Tick-borne Disease	Pathogen(s)	Tick Vector(s) Present in WV
Tularemia	Franciscella tularensis	American dog tick (Dermacentor variabilis)
		Lone star tick (Amblyomma americanum)
Anaplasmosis	Anaplasma phagocytophilum	Blacklegged tick (Ixodes scapularis)
Ehrlichiosis	Ehrlichia chaffeensis	Lone star tick (Amblyomma americanum)
	Ehrlichia ewingii	Gulf Coast tick (Amblyomma maculatum)
	Panola Mountain Ehrlichia sp.	Blacklegged tick (<i>lxodes scapularis</i>)
	Ehrlichia muris-like agent	
Lyme disease	Borrelia burgdorferi	Blacklegged tick (Ixodes scapularis)
	Borrelia mayonii	
Relapsing fever*	Borrelia miyamotoi	Blacklegged tick (Ixodes scapularis)
Powassan encephalitis*	Powassan virus	Groundhog tick (Ixodes cookei)
		Blacklegged tick (Ixodes scapularis)
Babesiosis*	Babesia microti	Blacklegged tick (Ixodes scapularis)
Rocky Mountain spotted	Rickettsia rickettsii	American dog tick (Dermacentor variabilis)
fever and other spotted	(and other spotted	Brown dog tick (<i>Rhipicephalus sanguineus</i>)
fever rickettsioses	fever group Rickettsia)	Lone star tick (Amblyomma americanum)

^{*}This tick-borne disease has not been detected in West Virginia.

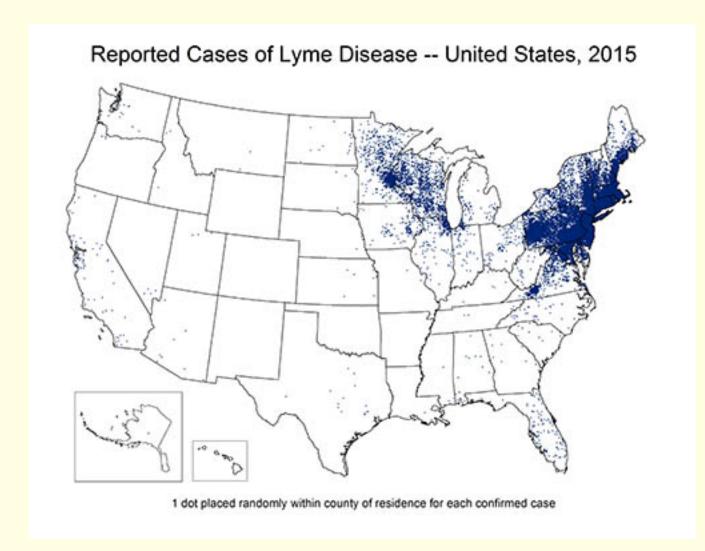
Tick-borne Disease Surveillance

Tickborne Disease ^a	# Confirmed or Probable Cases (2016) (as of January 9, 2017)
Ehrlichiosis	6
Lyme disease	354
Spotted fever group rickettsioses ^b	14
Q fever	1
TOTAL	375


^aTable includes only confirmed or probable cases that have been reviewed and closed by Zoonotic Disease Epidemiologist.

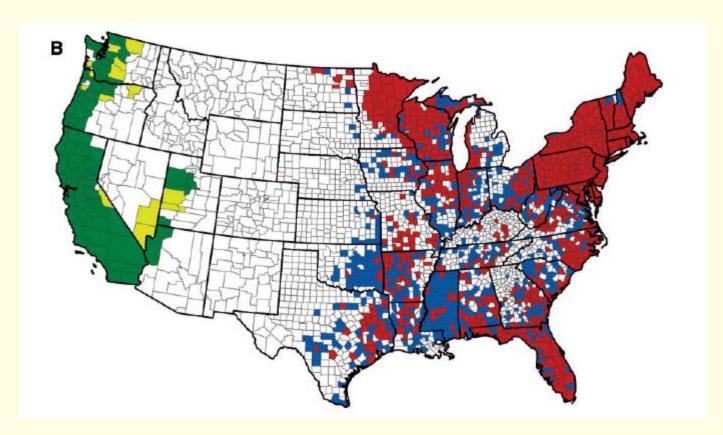
^bIncludes Rocky Mountain spotted fever

Tick-borne Disease Surveillance (cont.'d)


Reported Cases of Lyme Disease by Year - West Virginia, 2000-2016*

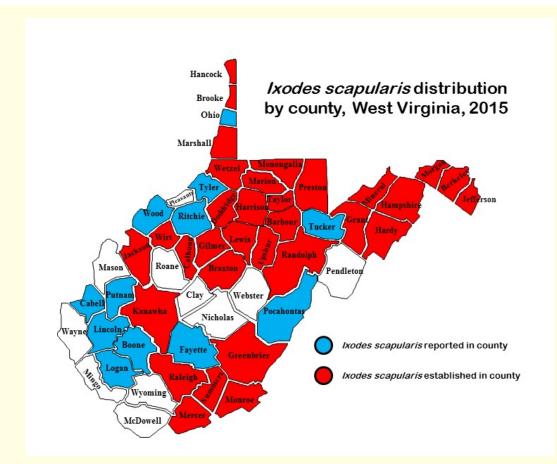
^{*}Updated as of January 9, 2017

Tick-borne Disease Surveillance (cont.'d)



Tick Surveillance

Lyme Disease Vector Distribution 1907-2015


- Ixodes scapularis reported (blue) or established (red) in county
- Ixodes pacificus reported (yellow) or established (green) in county

Eisen, R. J., L. Eisen & C. B. Beard. 2016. County-scale distribution of *Ixodes scapularis* and *Ixodes pacificus* (Acari: Ixodidae) in the continental United States. *Journal of Medical Entomology* **53** (2): 349-386.

27

Tick Surveillance (cont.'d)

Update to Eisen et al. (2016) to include data collected from August 25 to December 30, 2015.

Eisen, R. J., L. Eisen & C. B. Beard. 2016. County-scale distribution of *Ixodes scapularis* and *Ixodes pacificus* (Acari: Ixodidae) in the continental United States. *Journal of Medical Entomology* **53** (2): 349-386.

West Virginia Veterinary Tick Submission Project

	# of ticks submitted			
Tick Species	and identified (2013)	and identified (2014)	and identified (2015)	and identified (2016)
Dermacentor variabilis ¹	470	998	677	723
Amblyomma americanum²	5	16	85	109
Ixodes scapularis ³	121	179	410	171
Ixodes cookei ⁴	7	18	86	27
Haemaphysalis leporispalustris ⁵	1	8	0	3
Amblyomma maculatum ⁶	0	1	0	1
Rhipicephalus sanguineus ⁶	0	0	4	119

Summary of veterinary tick submissions for the current reporting period in West Virginia.

²Vector of ehrlichiosis, tularemia, STARI, and spotted fever rickettsioses

¹Vector of tularemia and Rocky Mountain spotted fever

³Vector of Lyme disease, anaplasmosis, babesiosis, and Powassan encephalitis

⁵Vector of tularemia in rabbits

⁴Vector of Powassan encephalitis

⁶Vector of spotted fever rickettsioses

Summary

- Although the yellow fever mosquito (Aedes aegypti) is established in neighboring states, this Zika competent vector has not been recorded in West Virginia.
- The Asian tiger mosquito (*Aedes albopictus*), another competent mosquito vector for Zika virus, is established in most West Virginia counties.
- La Crosse encephalitis is the major mosquito-borne disease in West Virginia.
- The June 23, 2016 flood of West Virginia did not result in an increase in adult mosquito activity.
- Human cases of Lyme disease are increasing in West Virginia.

Contact

Eric J. Dotseth

State Public Health Entomologist

West Virginia Department of Health & Human Resources

Bureau for Public Health

Office of Epidemiology & Prevention Services

350 Capitol Street, Room 125, Charleston, WV 25301

Phone: (304) 558-5358 ext. 1

Fax: (304) 558-6335

Email: Eric.J.Dotseth@wv.gov

Website: http://www.dhhr.wv.gov/oeps/disease

